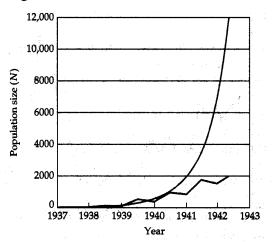
Day 33: Population ecology (exponential & logistic model)

Exponential model

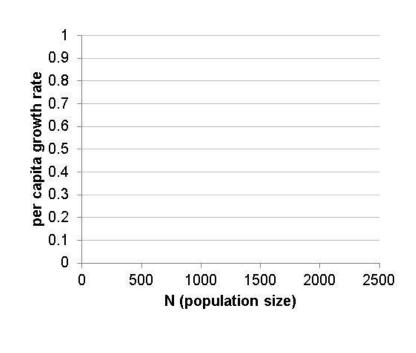

1. Imagine a population of salmon that starts with 1000 individuals. Assume the population is following the exponential model.

- a. There are 50 fry produced per 1000 salmon. What is the birth rate?
- b. 30 of 1000 salmon die each time period. Calculate the death rate.
- c. Calculate r.
- d. How many new salmon will be added to the population in one time step (i.e., what is $\Delta N/\Delta t$)?
- e. The total number of salmon in any time step = old N + new N = N + rN. How many salmon will there be at time 2?

2. **Practice exam question**. A population of 100 individuals has a birth rate of 0.8 and a death rate of 0.9.

- a. What is r_{inst} ?
- b. How many individuals would be added to (or subtracted from) the population in one time step (i.e., what is dN/dt)?
- c. How big would the population be after one time step (what is the new N)?

Logistic model



<u>Pheasants on Protection Island</u> Identify at least 2 reasons reality might not match the prediction in this example.

Logistic model

- 1. Consider a population with a carrying capacity of 2000 and $r_{max} = 1.0$.
 - a) **Practice exam Q:** In words, what is the carrying capacity of a population?
 - b) **Practice exam Q**: What is the <u>population</u> growth rate (dN/dt) when N = 1000?
 - c) Calculate the actual <u>per-capita rate of increase</u> for your assigned population size(s). Enter your results into the table below & share with Prof. Halpern.
 - d) Sketch these data on the axes below.

	K - N	Per capita rate of increase (K - N)
Ν	$\frac{K = N}{K}$	$r_{max}\left(\frac{K-N}{K}\right)$
0		
100		
200		
600		
1000		
1500		
2000		
2500		

